Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
80 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

MIMICause: Representation and automatic extraction of causal relation types from clinical notes (2110.07090v2)

Published 14 Oct 2021 in cs.CL

Abstract: Understanding causal narratives communicated in clinical notes can help make strides towards personalized healthcare. Extracted causal information from clinical notes can be combined with structured EHR data such as patients' demographics, diagnoses, and medications. This will enhance healthcare providers' ability to identify aspects of a patient's story communicated in the clinical notes and help make more informed decisions. In this work, we propose annotation guidelines, develop an annotated corpus and provide baseline scores to identify types and direction of causal relations between a pair of biomedical concepts in clinical notes; communicated implicitly or explicitly, identified either in a single sentence or across multiple sentences. We annotate a total of 2714 de-identified examples sampled from the 2018 n2c2 shared task dataset and train four different LLM based architectures. Annotation based on our guidelines achieved a high inter-annotator agreement i.e. Fleiss' kappa ($\kappa$) score of 0.72, and our model for identification of causal relations achieved a macro F1 score of 0.56 on the test data. The high inter-annotator agreement for clinical text shows the quality of our annotation guidelines while the provided baseline F1 score sets the direction for future research towards understanding narratives in clinical texts.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (6)
  1. Vivek Khetan (13 papers)
  2. Md Imbesat Hassan Rizvi (3 papers)
  3. Jessica Huber (1 paper)
  4. Paige Bartusiak (1 paper)
  5. Bogdan Sacaleanu (4 papers)
  6. Andrew Fano (3 papers)
Citations (17)