Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 144 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 23 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 197 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Physical Context and Timing Aware Sequence Generating GANs (2110.04077v1)

Published 28 Sep 2021 in cs.CV, cs.AI, and eess.IV

Abstract: Generative Adversarial Networks (GANs) have shown remarkable successes in generating realistic images and interpolating changes between images. Existing models, however, do not take into account physical contexts behind images in generating the images, which may cause unrealistic changes. Furthermore, it is difficult to generate the changes at a specific timing and they often do not match with actual changes. This paper proposes a novel GAN, named Physical Context and Timing aware sequence generating GANs (PCTGAN), that generates an image in a sequence at a specific timing between two images with considering physical contexts behind them. Our method consists of three components: an encoder, a generator, and a discriminator. The encoder estimates latent vectors from the beginning and ending images, their timings, and a target timing. The generator generates images and the physical contexts at the beginning, ending, and target timing from the corresponding latent vectors. The discriminator discriminates whether the generated images and contexts are real or not. In the experiments, PCTGAN is applied to a data set of sequential changes of shapes in die forging processes. We show that both timing and physical contexts are effective in generating sequential images.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Questions

We haven't generated a list of open questions mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.