Papers
Topics
Authors
Recent
2000 character limit reached

Complex-valued Federated Learning with Differential Privacy and MRI Applications (2110.03478v2)

Published 7 Oct 2021 in cs.CR and cs.LG

Abstract: Federated learning enhanced with Differential Privacy (DP) is a powerful privacy-preserving strategy to protect individuals sharing their sensitive data for processing in fields such as medicine and healthcare. Many medical applications, for example magnetic resonance imaging (MRI), rely on complex-valued signal processing techniques for data acquisition and analysis. However, the appropriate application of DP to complex-valued data is still underexplored. To address this issue, from the theoretical side, we introduce the complex-valued Gaussian mechanism, whose behaviour we characterise in terms of $f$-DP, $(\varepsilon, \delta)$-DP and R\'enyi-DP. Moreover, we generalise the fundamental algorithm DP stochastic gradient descent to complex-valued neural networks and present novel complex-valued neural network primitives compatible with DP. Experimentally, we showcase a proof-of-concept by training federated complex-valued neural networks with DP on a real-world task (MRI pulse sequence classification in $k$-space), yielding excellent utility and privacy. Our results highlight the relevance of combining federated learning with robust privacy-preserving techniques in the MRI context.

Citations (4)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.