Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 100 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 29 tok/s
GPT-5 High 29 tok/s Pro
GPT-4o 103 tok/s
GPT OSS 120B 480 tok/s Pro
Kimi K2 215 tok/s Pro
2000 character limit reached

Optimized U-Net for Brain Tumor Segmentation (2110.03352v2)

Published 7 Oct 2021 in eess.IV, cs.CV, and cs.LG

Abstract: We propose an optimized U-Net architecture for a brain tumor segmentation task in the BraTS21 challenge. To find the optimal model architecture and the learning schedule, we have run an extensive ablation study to test: deep supervision loss, Focal loss, decoder attention, drop block, and residual connections. Additionally, we have searched for the optimal depth of the U-Net encoder, number of convolutional channels and post-processing strategy. Our method won the validation phase and took third place in the test phase. We have open-sourced the code to reproduce our BraTS21 submission at the NVIDIA Deep Learning Examples GitHub Repository.

Citations (84)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.