Papers
Topics
Authors
Recent
2000 character limit reached

Real-time Nonlinear MPC Strategy with Full Vehicle Validation for Autonomous Driving (2110.03349v3)

Published 7 Oct 2021 in eess.SY and cs.SY

Abstract: In this paper, we present the development and deployment of an embedded optimal control strategy for autonomous driving applications on a Ford Focus road vehicle. Non-linear model predictive control (NMPC) is designed and deployed on a system with hard real-time constraints. We show the properties of sequential quadratic programming (SQP) optimization solvers that are suitable for driving tasks. Importantly, the designed algorithms are validated based on a standard automotive XiL development cycle: model-in-the-loop (MiL) with high fidelity vehicle dynamics, hardware-in-the-loop (HiL) with vehicle actuation and embedded platform, and full vehicle-hardware-in-the-loop (VeHiL). The autonomous driving environment contains both virtual simulation and physical proving ground tracks. NMPC algorithms and optimal control problem formulation are fine-tuned using a deployable C code via code generation compatible with the target embedded toolchains. Finally, the developed systems are applied to autonomous collision avoidance, trajectory tracking, and lane change at high speed on city/highway and low speed at a parking environment.

Citations (16)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.