Papers
Topics
Authors
Recent
2000 character limit reached

Parallel Composition of Weighted Finite-State Transducers

Published 6 Oct 2021 in cs.CL | (2110.02848v1)

Abstract: Finite-state transducers (FSTs) are frequently used in speech recognition. Transducer composition is an essential operation for combining different sources of information at different granularities. However, composition is also one of the more computationally expensive operations. Due to the heterogeneous structure of FSTs, parallel algorithms for composition are suboptimal in efficiency, generality, or both. We propose an algorithm for parallel composition and implement it on graphics processing units. We benchmark our parallel algorithm on the composition of random graphs and the composition of graphs commonly used in speech recognition. The parallel composition scales better with the size of the input graphs and for large graphs can be as much as 10 to 30 times faster than a sequential CPU algorithm.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.