Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 85 tok/s Pro
Kimi K2 192 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Quantum classifiers for domain adaptation (2110.02808v1)

Published 6 Oct 2021 in quant-ph

Abstract: Transfer learning (TL), a crucial subfield of machine learning, aims to accomplish a task in the target domain with the acquired knowledge of the source domain. Specifically, effective domain adaptation (DA) facilitates the delivery of the TL task where all the data samples of the two domains are distributed in the same feature space. In this paper, two quantum implementations of the DA classifier are presented with quantum speedup compared with the classical DA classifier. One implementation, the quantum basic linear algebra subroutines (QBLAS)-based classifier, can predict the labels of the target domain data with logarithmic resources in the number and dimension of the given data. The other implementation efficiently accomplishes the DA task through a variational hybrid quantum-classical procedure.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.