Papers
Topics
Authors
Recent
2000 character limit reached

Investigation of Dataset Features for Just-in-Time Defect Prediction

Published 25 Sep 2021 in cs.SE | (2109.13634v1)

Abstract: Just-in-time (JIT) defect prediction refers to the technique of predicting whether a code change is defective. Many contributions have been made in this area through the excellent dataset by Kamei. In this paper, we revisit the dataset and highlight preprocessing difficulties with the dataset and the limitations of the dataset on unsupervised learning. Secondly, we propose certain features in the Kamei dataset that can be used for training models. Lastly, we discuss the limitations of the dataset's features.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.