Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

High-dimensional Portfolio Optimization using Joint Shrinkage (2109.13633v1)

Published 24 Sep 2021 in q-fin.PM and stat.AP

Abstract: We consider the problem of optimizing a portfolio of financial assets, where the number of assets can be much larger than the number of observations. The optimal portfolio weights require estimating the inverse covariance matrix of excess asset returns, classical solutions of which behave badly in high-dimensional scenarios. We propose to use a regression-based joint shrinkage method for estimating the partial correlation among the assets. Extensive simulation studies illustrate the superior performance of the proposed method with respect to variance, weight, and risk estimation errors compared with competing methods for both the global minimum variance portfolios and Markowitz mean-variance portfolios. We also demonstrate the excellent empirical performances of our method on daily and monthly returns of the components of the S&P 500 index.

Summary

We haven't generated a summary for this paper yet.