Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Nodewise Regression Approach to Estimating Large Portfolios (1611.07347v3)

Published 22 Nov 2016 in math.ST and stat.TH

Abstract: This paper investigates the large sample properties of the variance, weights, and risk of high-dimensional portfolios where the inverse of the covariance matrix of excess asset returns is estimated using a technique called nodewise regression. Nodewise regression provides a direct estimator for the inverse covariance matrix using the Least Absolute Shrinkage and Selection Operator (Lasso) of Tibshirani (1994) to estimate the entries of a sparse precision matrix. We show that the variance, weights, and risk of the global minimum variance portfolios and the Markowitz mean-variance portfolios are consistently estimated with more assets than observations. We show, empirically, that the nodewise regression-based approach performs well in comparison to factor models and shrinkage methods.

Summary

We haven't generated a summary for this paper yet.