Papers
Topics
Authors
Recent
Search
2000 character limit reached

On eigenvalues of a high-dimensional Kendall's rank correlation matrix with dependence

Published 28 Sep 2021 in math.ST and stat.TH | (2109.13624v3)

Abstract: This paper investigates limiting spectral distribution of a high-dimensional Kendall's rank correlation matrix. The underlying population is allowed to have general dependence structure. The result no longer follows the generalized Mar\u{c}enko-Pastur law, which is brand new. It's the first result on rank correlation matrices with dependence. As applications, we study the Kendall's rank correlation matrix for multivariate normal distributions with a general covariance matrix. From these results, we further gain insights on Kendall's rank correlation matrix and its connections with the sample covariance/correlation matrix.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.