Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

L$^{2}$NAS: Learning to Optimize Neural Architectures via Continuous-Action Reinforcement Learning (2109.12425v1)

Published 25 Sep 2021 in cs.LG and cs.CV

Abstract: Neural architecture search (NAS) has achieved remarkable results in deep neural network design. Differentiable architecture search converts the search over discrete architectures into a hyperparameter optimization problem which can be solved by gradient descent. However, questions have been raised regarding the effectiveness and generalizability of gradient methods for solving non-convex architecture hyperparameter optimization problems. In this paper, we propose L${2}$NAS, which learns to intelligently optimize and update architecture hyperparameters via an actor neural network based on the distribution of high-performing architectures in the search history. We introduce a quantile-driven training procedure which efficiently trains L${2}$NAS in an actor-critic framework via continuous-action reinforcement learning. Experiments show that L${2}$NAS achieves state-of-the-art results on NAS-Bench-201 benchmark as well as DARTS search space and Once-for-All MobileNetV3 search space. We also show that search policies generated by L${2}$NAS are generalizable and transferable across different training datasets with minimal fine-tuning.

Citations (9)

Summary

We haven't generated a summary for this paper yet.