Papers
Topics
Authors
Recent
2000 character limit reached

Generalized Optimization: A First Step Towards Category Theoretic Learning Theory (2109.10262v1)

Published 20 Sep 2021 in math.OC, cs.LG, and stat.ML

Abstract: The Cartesian reverse derivative is a categorical generalization of reverse-mode automatic differentiation. We use this operator to generalize several optimization algorithms, including a straightforward generalization of gradient descent and a novel generalization of Newton's method. We then explore which properties of these algorithms are preserved in this generalized setting. First, we show that the transformation invariances of these algorithms are preserved: while generalized Newton's method is invariant to all invertible linear transformations, generalized gradient descent is invariant only to orthogonal linear transformations. Next, we show that we can express the change in loss of generalized gradient descent with an inner product-like expression, thereby generalizing the non-increasing and convergence properties of the gradient descent optimization flow. Finally, we include several numerical experiments to illustrate the ideas in the paper and demonstrate how we can use them to optimize polynomial functions over an ordered ring.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.