First-order and second-order variants of the gradient descent in a unified framework (1810.08102v4)
Abstract: In this paper, we provide an overview of first-order and second-order variants of the gradient descent method that are commonly used in machine learning. We propose a general framework in which 6 of these variants can be interpreted as different instances of the same approach. They are the vanilla gradient descent, the classical and generalized Gauss-Newton methods, the natural gradient descent method, the gradient covariance matrix approach, and Newton's method. Besides interpreting these methods within a single framework, we explain their specificities and show under which conditions some of them coincide.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.