Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
95 tokens/sec
Gemini 2.5 Pro Premium
32 tokens/sec
GPT-5 Medium
18 tokens/sec
GPT-5 High Premium
18 tokens/sec
GPT-4o
97 tokens/sec
DeepSeek R1 via Azure Premium
87 tokens/sec
GPT OSS 120B via Groq Premium
475 tokens/sec
Kimi K2 via Groq Premium
259 tokens/sec
2000 character limit reached

Convex Mixed-Integer Nonlinear Programs Derived from Generalized Disjunctive Programming using Cones (2109.09657v3)

Published 20 Sep 2021 in math.OC

Abstract: We propose the formulation of convex Generalized Disjunctive Programming (GDP) problems using conic inequalities leading to conic GDP problems. We then show the reformulation of conic GDPs into Mixed-Integer Conic Programming (MICP) problems through both the big-M and hull reformulations. These reformulations have the advantage that they are representable using the same cones as the original conic GDP. In the case of the hull reformulation, they require no approximation of the perspective function. Moreover, the MICP problems derived can be solved by specialized conic solvers and offer a natural extended formulation amenable to both conic and gradient-based solvers. We present the closed form of several convex functions and their respective perspectives in conic sets, allowing users to formulate their conic GDP problems easily. We finally implement a large set of conic GDP examples and solve them via the scalar nonlinear and conic mixed-integer reformulations. These examples include applications from Process Systems Engineering, Machine learning, and randomly generated instances. Our results show that the conic structure can be exploited to solve these challenging MICP problems more efficiently. Our main contribution is providing the reformulations, examples, and computational results that support the claim that taking advantage of conic formulations of convex GDP instead of their nonlinear algebraic descriptions can lead to a more efficient solution to these problems.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.