Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Continuous Welch bounds with Applications (2109.09296v1)

Published 20 Sep 2021 in math.FA

Abstract: Let $(\Omega, \mu)$ be a measure space and ${\tau_\alpha}{\alpha\in \Omega}$ be a normalized continuous Bessel family for a finite dimensional Hilbert space $\mathcal{H}$ of dimension $d$. If the diagonal $\Delta\coloneqq {(\alpha, \alpha):\alpha \in \Omega}$ is measurable in the measure space $\Omega\times \Omega$, then we show that \begin{align*} \sup _{\alpha, \beta \in \Omega, \alpha\neq \beta}|\langle \tau\alpha, \tau_\beta\rangle |{2m}\geq \frac{1}{(\mu\times\mu)((\Omega\times\Omega)\setminus\Delta)}\left[\frac{ \mu(\Omega)2}{{d+m-1 \choose m}}-(\mu\times\mu)(\Delta)\right], \quad \forall m \in \mathbb{N}. \end{align*} This improves 47 years old celebrated result of Welch [\textit{IEEE Transactions on Information Theory, 1974}]. We introduce the notions of continuous cross correlation and frame potential of Bessel family and give applications of continuous Welch bounds to these concepts. We also introduce the notion of continuous Grassmannian frames.

Summary

We haven't generated a summary for this paper yet.