Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 45 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 11 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 88 tok/s Pro
Kimi K2 214 tok/s Pro
GPT OSS 120B 460 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Critical Points in Quantum Generative Models (2109.06957v3)

Published 14 Sep 2021 in quant-ph

Abstract: One of the most important properties of neural networks is the clustering of local minima of the loss function near the global minimum, enabling efficient training. Though generative models implemented on quantum computers are known to be more expressive than their traditional counterparts, it has empirically been observed that these models experience a transition in the quality of their local minima. Namely, below some critical number of parameters, all local minima are far from the global minimum in function value; above this critical parameter count, all local minima are good approximators of the global minimum. Furthermore, for a certain class of quantum generative models, this transition has empirically been observed to occur at parameter counts exponentially large in the problem size, meaning practical training of these models is out of reach. Here, we give the first proof of this transition in trainability, specializing to this latter class of quantum generative model. We use techniques inspired by those used to study the loss landscapes of classical neural networks. We also verify that our analytic results hold experimentally even at modest model sizes.

Citations (39)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

Authors (1)