Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Identifying overparameterization in Quantum Circuit Born Machines (2307.03292v2)

Published 6 Jul 2023 in quant-ph

Abstract: In machine learning, overparameterization is associated with qualitative changes in the empirical risk landscape, which can lead to more efficient training dynamics. For many parameterized models used in statistical learning, there exists a critical number of parameters, or model size, above which the model is constructed and trained in the overparameterized regime. There are many characteristics of overparameterized loss landscapes. The most significant is the convergence of standard gradient descent to global or local minima of low loss. In this work, we study the onset of overparameterization transitions for quantum circuit Born machines, generative models that are trained using non-adversarial gradient-based methods. We observe that bounds based on numerical analysis are in general good lower bounds on the overparameterization transition. However, bounds based on the quantum circuit's algebraic structure are very loose upper bounds. Our results indicate that fully understanding the trainability of these models remains an open question.

Citations (1)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.