Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 37 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 14 tok/s Pro
GPT-5 High 14 tok/s Pro
GPT-4o 90 tok/s Pro
Kimi K2 179 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 37 tok/s Pro
2000 character limit reached

Barren plateaus are swamped with traps (2405.05332v1)

Published 8 May 2024 in quant-ph

Abstract: Two main challenges preventing efficient training of variational quantum algorithms and quantum machine learning models are local minima and barren plateaus. Typically, barren plateaus are associated with deep circuits, while shallow circuits have been shown to suffer from suboptimal local minima. We point out a simple mechanism that creates exponentially many poor local minima specifically in the barren plateau regime. These local minima are trivial solutions, optimizing only a few terms in the loss function, leaving the rest on their barren plateaus. More precisely, we show the existence of approximate local minima, optimizing a single loss term, and conjecture the existence of exact local minima, optimizing only a logarithmic fraction of all loss function terms. One implication of our findings is that simply yielding large gradients is not sufficient to render an initialization strategy a meaningful solution to the barren plateau problem.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (67)
  1. “Variational quantum algorithms”. Nature Reviews Physics 2021 3:9 3, 625–644 (2021). arXiv:2012.09265.
  2. “Quantum machine learning”. Nature 549, 195–202 (2017). arXiv:1611.09347.
  3. “An introduction to quantum machine learning”. Contemporary Physics 56, 172–185 (2015). arXiv:1409.3097v1.
  4. John Preskill. “Quantum computing in the NISQ era and beyond”. Quantum 2, 1–20 (2018). arXiv:1801.00862.
  5. “Noisy intermediate-scale quantum (NISQ) algorithms”. Reviews of Modern Physics94 (2021). arXiv:2101.08448v2.
  6. “Quantum computing at the quantum advantage threshold: a down-to-business review” (2022). arXiv:2203.17181.
  7. “Subtleties in the trainability of quantum machine learning models”. Quantum Machine Intelligence5 (2021). arXiv:2110.14753.
  8. “Trainability barriers and opportunities in quantum generative modeling” (2023). arXiv:2305.02881.
  9. “Deep learning”. MIT Press.  (2016). url: http://www.deeplearningbook.org.
  10. “Training Variational Quantum Algorithms Is NP-Hard”. Physical Review Letters 127, 120502 (2021). arXiv:2101.07267.
  11. Eric R. Anschuetz. “Critical Points in Quantum Generative Models” (2021). arXiv:2109.06957.
  12. “Quantum variational algorithms are swamped with traps”. Nature Communications 13, 7760 (2022). arXiv:2205.05786.
  13. “Exponentially Many Local Minima in Quantum Neural Networks”. Proceedings of Machine Learning Research 139, 12144–12155 (2021). arXiv:2110.02479.
  14. “Barren plateaus in quantum neural network training landscapes”. Nature Communications 9, 1–7 (2018). arXiv:1803.11173.
  15. “A Review of Barren Plateaus in Variational Quantum Computing” (2024). arXiv:2405.00781.
  16. “Theory of overparametrization in quantum neural networks” (2021). arXiv:2109.11676.
  17. “Abrupt transitions in variational quantum circuit training”. Physical Review A103 (2021). arXiv:2010.09720.
  18. “Training Saturation in Layerwise Quantum Approximate Optimisation”. Physical Review A104 (2021). arXiv:2106.13814v1.
  19. “Learning Unitaries by Gradient Descent” (2020). arXiv:2001.11897.
  20. “Efficient variational synthesis of quantum circuits with coherent multi-start optimization”. Quantum 7, 993 (2023). arXiv:2205.01121.
  21. “A Quantum Approximate Optimization Algorithm” (2014). arXiv:1411.4028.
  22. “Hardware-efficient Variational Quantum Eigensolver for Small Molecules and Quantum Magnets”. Nature 549, 242–246 (2017). arXiv:1704.05018.
  23. “Strategies for quantum computing molecular energies using the unitary coupled cluster ansatz”. Quantum Science and Technology 4, 014008 (2018). arXiv:1701.02691.
  24. “Absence of Barren Plateaus in Quantum Convolutional Neural Networks”. Physical Review X 11, 041011 (2021). arXiv:2011.02966.
  25. “Diagnosing Barren Plateaus with Tools from Quantum Optimal Control”. Quantum 6, 824 (2022). arXiv:2105.14377v3.
  26. “Group-Invariant Quantum Machine Learning”. PRX Quantum 3, 030341 (2022). arXiv:2205.02261.
  27. “Exploiting symmetry in variational quantum machine learning” (2022). arXiv:2205.06217.
  28. “Does provable absence of barren plateaus imply classical simulability? Or, why we need to rethink variational quantum computing” (2023). arXiv:2312.09121.
  29. “Layerwise learning for quantum neural networks”. Quantum Machine Intelligence3 (2020). arXiv:2006.14904v1.
  30. “An initialization strategy for addressing barren plateaus in parametrized quantum circuits”. Quantum 3, 214 (2019). arXiv:1903.05076v3.
  31. “Escaping from the Barren Plateau via Gaussian Initializations in Deep Variational Quantum Circuits”. Advances in Neural Information Processing Systems35 (2022). arXiv:2203.09376.
  32. “Trainability Enhancement of Parameterized Quantum Circuits via Reduced-Domain Parameter Initialization” (2023). arXiv:2302.06858.
  33. “Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the Race to Practical Quantum Advantage” (2022). arXiv:2208.13673.
  34. “CAFQA: Clifford Ansatz For Quantum Accuracy” (2022). arXiv:2202.12924.
  35. “Equivalence of quantum barren plateaus to cost concentration and narrow gorges”. Quantum Science and Technology 7, 045015 (2022). arXiv:2104.05868v2.
  36. “Equivalence of cost concentration and gradient vanishing for quantum circuits: an elementary proof in the Riemannian formulation” (2024). arXiv:2402.07883.
  37. “Connecting Ansatz Expressibility to Gradient Magnitudes and Barren Plateaus”. PRX Quantum 3, 010313 (2022). arXiv:2101.02138v2.
  38. “Exact and approximate unitary 2-designs and their application to fidelity estimation”. Physical Review A 80, 012304 (2009). arXiv:0606161.
  39. “Approximate Unitary t-Designs by Short Random Quantum Circuits Using Nearest-Neighbor and Long-Range Gates”. Communications in Mathematical Physics 401, 1531–1626 (2023). arXiv:1809.06957.
  40. “Cost function dependent barren plateaus in shallow parametrized quantum circuits”. Nature Communications 2021 12:1 12, 1–12 (2021). arXiv:2001.00550.
  41. “On barren plateaus and cost function locality in variational quantum algorithms”. Journal of Physics A: Mathematical and Theoretical 54, 245301 (2021). arXiv:2011.10530.
  42. “Quantum-assisted quantum compiling”. Quantum 3, 140 (2019). arXiv:1807.00800v5.
  43. “Robust quantum compilation and circuit optimisation via energy minimisation”. Quantum 6, 628 (2022). arXiv:1811.03147v5.
  44. “Quantum autoencoders for efficient compression of quantum data”. Quantum Science and Technology 2, 045001 (2017). arXiv:1612.02806v2.
  45. “Entanglement-Induced Barren Plateaus”. PRX Quantum 2, 040316 (2021). arXiv:2010.15968.
  46. “Trainability of Dissipative Perceptron-Based Quantum Neural Networks”. Physical Review Letters 128, 180505 (2022). arXiv:2005.12458.
  47. “Variational quantum eigensolver techniques for simulating carbon monoxide oxidation”. Communications Physics 5, 199 (2022).
  48. “Noise-induced barren plateaus in variational quantum algorithms”. Nature Communications 12, 6961 (2021). arXiv:2007.14384.
  49. Daniel Stilck França and Raul García-Patrón. “Limitations of optimization algorithms on noisy quantum devices”. Nature Physics 17, 1221–1227 (2021). arXiv:2009.05532v1.
  50. “Classical simulations of noisy variational quantum circuits” (2023). arXiv:2306.05400.
  51. “Beyond unital noise in variational quantum algorithms: noise-induced barren plateaus and fixed points” (2024). arXiv:2402.08721.
  52. “Quantum Circuit Learning”. Physical Review A98 (2018). arXiv:1803.00745.
  53. “Evaluating analytic gradients on quantum hardware”. Physical Review A99 (2018). arXiv:1811.11184v1.
  54. “Finding approximate local minima faster than gradient descent”. In Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing. Volume Part F1284, pages 1195–1199. New York, NY, USA (2017). ACM. arXiv:1611.01146.
  55. “A Unified Theory of Barren Plateaus for Deep Parametrized Quantum Circuits” (2023). arXiv:2309.09342.
  56. “The Adjoint Is All You Need: Characterizing Barren Plateaus in Quantum Ans\\\backslash\"atze” (2023). arXiv:2309.07902.
  57. “The effect of data encoding on the expressive power of variational quantum machine learning models”. Physical Review A103 (2020). arXiv:2008.08605v2.
  58. Francisco Javier Gil Vidal and Dirk Oliver Theis. “Input Redundancy for Parameterized Quantum Circuits”. Frontiers in Physics 8, 297 (2020). arXiv:1901.11434.
  59. “Fourier series weight in quantum machine learning” (2023). arXiv:2302.00105.
  60. “Multi-dimensional Fourier series with quantum circuits” (2023). arXiv:2302.03389.
  61. “Classical surrogates for quantum learning models” (2022). arXiv:2206.11740.
  62. “Classically Approximating Variational Quantum Machine Learning with Random Fourier Features” (2023).
  63. “Efficient recovery of variational quantum algorithms landscapes using classical signal processing” (2022). arXiv:2208.05958.
  64. “Spectral analysis for noise diagnostics and filter-based digital error mitigation” (2022). arXiv:2206.08811.
  65. “Fourier expansion in variational quantum algorithms”. Physical Review A 108, 032406 (2023). arXiv:2304.03787v2.
  66. “PennyLane: Automatic differentiation of hybrid quantum-classical computations” (2018). arXiv:1811.04968.
  67. url: https://github.com/idnm/barren_traps.
Citations (2)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-Up Questions

We haven't generated follow-up questions for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com
Youtube Logo Streamline Icon: https://streamlinehq.com