Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 92 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 32 tok/s
GPT-5 High 40 tok/s Pro
GPT-4o 83 tok/s
GPT OSS 120B 467 tok/s Pro
Kimi K2 197 tok/s Pro
2000 character limit reached

Build your own tensor network library: DMRjulia I. Basic library for the density matrix renormalization group (2109.03120v1)

Published 7 Sep 2021 in quant-ph

Abstract: An introduction to the density matrix renormalization group is contained here, including coding examples. The focus of this code is on basic operations involved in tensor network computations, and this forms the foundation of the DMRjulia library. Algorithmic complexity, measurements from the matrix product state, convergence to the ground state, and other relevant features are also discussed. The present document covers the implementation of operations for dense tensors into the Julia language. The code can be used as an educational tool to understand how tensor network computations are done in the context of entanglement renormalization or as a template for other codes in low level languages. A comprehensive Supplemental Material is meant to be a "Numerical Recipes" style introduction to the core functions and a simple implementation of them. The code is fast enough to be used in research and can be used to make new algorithms.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube