Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
110 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Assessing the Use Cases of Persistent Memory in High-Performance Scientific Computing (2109.02166v1)

Published 5 Sep 2021 in cs.DC

Abstract: As the High Performance Computing world moves towards the Exa-Scale era, huge amounts of data should be analyzed, manipulated and stored. In the traditional storage/memory hierarchy, each compute node retains its data objects in its local volatile DRAM. Whenever the DRAM's capacity becomes insufficient for storing this data, the computation should either be distributed between several compute nodes, or some portion of these data objects must be stored in a non-volatile block device such as a hard disk drive or an SSD storage device. Optane DataCenter Persistent Memory Module (DCPMM), a new technology introduced by Intel, provides non-volatile memory that can be plugged into standard memory bus slots and therefore be accessed much faster than standard storage devices. In this work, we present and analyze the results of a comprehensive performance assessment of several ways in which DCPMM can 1) replace standard storage devices, and 2) replace or augment DRAM for improving the performance of HPC scientific computations. To achieve this goal, we have configured an HPC system such that DCPMM can service I/O operations of scientific applications, replace standard storage devices and file systems (specifically for diagnostics and checkpoint-restarting), and serve for expanding applications' main memory. We focus on keeping the scientific codes with as few changes as possible, while allowing them to access the NVM transparently as if they access persistent storage. Our results show that DCPMM allows scientific applications to fully utilize nodes' locality by providing them with sufficiently-large main memory. Moreover, it can be used for providing a high-performance replacement for persistent storage. Thus, the usage of DCPMM has the potential of replacing standard HDD and SSD storage devices in HPC architectures and enabling a more efficient platform for modern supercomputing applications.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (8)
  1. Yehonatan Fridman (10 papers)
  2. Yaniv Snir (2 papers)
  3. Matan Rusanovsky (13 papers)
  4. Kfir Zvi (2 papers)
  5. Harel Levin (6 papers)
  6. Danny Hendler (20 papers)
  7. Hagit Attiya (27 papers)
  8. Gal Oren (38 papers)
Citations (5)

Summary

We haven't generated a summary for this paper yet.