Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
126 tokens/sec
GPT-4o
47 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Recognition of COVID-19 Disease Utilizing X-Ray Imaging of the Chest Using CNN (2109.02103v1)

Published 5 Sep 2021 in eess.IV and cs.CV

Abstract: Since this COVID-19 pandemic thrives, the utilization of X-Ray images of the Chest (CXR) as a complementary screening technique to RT-PCR testing grows to its clinical use for respiratory complaints. Many new deep learning approaches have developed as a consequence. The goal of this research is to assess the convolutional neural networks (CNNs) to diagnosis COVID-19 utisizing X-ray images of chest. The performance of CNN with one, three, and four convolution layers has been evaluated in this research. A dataset of 13,808 CXR photographs are used in this research. When evaluated on X-ray images with three splits of the dataset, our preliminary experimental results show that the CNN model with three convolution layers can reliably detect with 96 percent accuracy (precision being 96 percent). This fact indicates the commitment of our suggested model for reliable screening of COVID-19.

Citations (3)

Summary

We haven't generated a summary for this paper yet.