Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Uniformity Testing in the Shuffle Model: Simpler, Better, Faster (2108.08987v2)

Published 20 Aug 2021 in cs.DS, cs.CR, cs.DM, and stat.ML

Abstract: Uniformity testing, or testing whether independent observations are uniformly distributed, is the prototypical question in distribution testing. Over the past years, a line of work has been focusing on uniformity testing under privacy constraints on the data, and obtained private and data-efficient algorithms under various privacy models such as central differential privacy (DP), local privacy (LDP), pan-privacy, and, very recently, the shuffle model of differential privacy. In this work, we considerably simplify the analysis of the known uniformity testing algorithm in the shuffle model, and, using a recent result on "privacy amplification via shuffling," provide an alternative algorithm attaining the same guarantees with an elementary and streamlined argument.

Citations (5)

Summary

We haven't generated a summary for this paper yet.