Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

From Domain-Specific Languages to Memory-Optimized Accelerators for Fluid Dynamics (2108.03326v1)

Published 6 Aug 2021 in cs.DC

Abstract: Many applications are increasingly requiring numerical simulations for solving complex problems. Most of these numerical algorithms are massively parallel and often implemented on parallel high-performance computers. However, classic CPU-based platforms suffers due to the demand for higher resolutions and the exponential growth of data. FPGAs offer a powerful and flexible alternative that can host accelerators to complement such platforms. Developing such application-specific accelerators is still challenging because it is hard to provide efficient code for hardware synthesis. In this paper, we study the challenges of porting a numerical simulation kernel onto FPGA. We propose an automated tool flow from a domain-specific language (DSL) to generate accelerators for computational fluid dynamics on FPGA. Our DSL-based flow simplifies the exploration of parameters and constraints such as on-chip memory usage. We also propose a decoupled optimization of memory and logic resources, which allows us to better use the limited FPGA resources. In our preliminary evaluation, this enabled doubling the number of parallel kernels, increasing the accelerator speedup versus ARM execution from 7 to 12 times.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Karl F. A. Friebel (4 papers)
  2. Stephanie Soldavini (7 papers)
  3. Gerald Hempel (4 papers)
  4. Christian Pilato (22 papers)
  5. Jeronimo Castrillon (31 papers)
Citations (9)