Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 16 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 125 tok/s Pro
Kimi K2 191 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Persistent homology method to detect block structures in weighted networks (2108.01613v1)

Published 3 Aug 2021 in math.DS, math.AT, math.CO, math.ST, and stat.TH

Abstract: Unravelling the block structure of a network is critical for studying macroscopic features and community-level dynamics. The weighted stochastic block model (WSBM), a variation of the traditional stochastic block model, is designed for weighted networks, but it is not always optimal. We introduce a novel topological method to study the block structure of weighted networks by comparing their persistence diagrams. We found persistence diagrams of networks with different block structures show distinct features, sufficient to distinguish. Moreover, the overall characteristics are preserved even with more stochastic examples or modified hyperparameters. Finally, when random graphs whose latent block structure is unknown are tested, results from persistence diagram analysis are consistent with their weighted stochastic block model. Although this topological method cannot completely replace the original WSBM method for some reasons, it is worth to be investigated further.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.