Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 86 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 34 tok/s Pro
GPT-5 High 31 tok/s Pro
GPT-4o 83 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 440 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

MOHAQ: Multi-Objective Hardware-Aware Quantization of Recurrent Neural Networks (2108.01192v3)

Published 2 Aug 2021 in cs.LG and cs.AR

Abstract: The compression of deep learning models is of fundamental importance in deploying such models to edge devices. The selection of compression parameters can be automated to meet changes in the hardware platform and application using optimization algorithms. This article introduces a Multi-Objective Hardware-Aware Quantization (MOHAQ) method, which considers hardware efficiency and inference error as objectives for mixed-precision quantization. The proposed method feasibly evaluates candidate solutions in a large search space by relying on two steps. First, post-training quantization is applied for fast solution evaluation (inference-only search). Second, we propose the "beacon-based search" to retrain selected solutions only and use them as beacons to know the effect of retraining on other solutions. We use a speech recognition model based on Simple Recurrent Unit (SRU) using the TIMIT dataset and apply our method to run on SiLago and Bitfusion platforms. We provide experimental evaluations showing that SRU can be compressed up to 8x by post-training quantization without any significant error increase. On SiLago, we found solutions that achieve 97\% and 86\% of the maximum possible speedup and energy saving, with a minor increase in error. On Bitfusion, beacon-based search reduced the error gain of inference-only search by up to 4.9 percentage points.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.