Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Activation Density based Mixed-Precision Quantization for Energy Efficient Neural Networks (2101.04354v1)

Published 12 Jan 2021 in cs.LG and cs.NE

Abstract: As neural networks gain widespread adoption in embedded devices, there is a need for model compression techniques to facilitate deployment in resource-constrained environments. Quantization is one of the go-to methods yielding state-of-the-art model compression. Most approaches take a fully trained model, apply different heuristics to determine the optimal bit-precision for different layers of the network, and retrain the network to regain any drop in accuracy. Based on Activation Density (AD)-the proportion of non-zero activations in a layer-we propose an in-training quantization method. Our method calculates bit-width for each layer during training yielding a mixed precision model with competitive accuracy. Since we train lower precision models during training, our approach yields the final quantized model at lower training complexity and also eliminates the need for re-training. We run experiments on benchmark datasets like CIFAR-10, CIFAR-100, TinyImagenet on VGG19/ResNet18 architectures and report the accuracy and energy estimates for the same. We achieve ~4.5x benefit in terms of estimated multiply-and-accumulate (MAC) reduction while reducing the training complexity by 50% in our experiments. To further evaluate the energy benefits of our proposed method, we develop a mixed-precision scalable Process In Memory (PIM) hardware accelerator platform. The hardware platform incorporates shift-add functionality for handling multi-bit precision neural network models. Evaluating the quantized models obtained with our proposed method on the PIM platform yields ~5x energy reduction compared to 16-bit models. Additionally, we find that integrating AD based quantization with AD based pruning (both conducted during training) yields up to ~198x and ~44x energy reductions for VGG19 and ResNet18 architectures respectively on PIM platform compared to baseline 16-bit precision, unpruned models.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Karina Vasquez (1 paper)
  2. Yeshwanth Venkatesha (15 papers)
  3. Abhiroop Bhattacharjee (24 papers)
  4. Abhishek Moitra (30 papers)
  5. Priyadarshini Panda (104 papers)
Citations (13)