Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash 93 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 28 tok/s
GPT-5 High 36 tok/s Pro
GPT-4o 105 tok/s
GPT OSS 120B 476 tok/s Pro
Kimi K2 214 tok/s Pro
2000 character limit reached

Changes in European Solidarity Before and During COVID-19: Evidence from a Large Crowd- and Expert-Annotated Twitter Dataset (2108.01042v1)

Published 2 Aug 2021 in cs.CL and cs.SI

Abstract: We introduce the well-established social scientific concept of social solidarity and its contestation, anti-solidarity, as a new problem setting to supervised machine learning in NLP to assess how European solidarity discourses changed before and after the COVID-19 outbreak was declared a global pandemic. To this end, we annotate 2.3k English and German tweets for (anti-)solidarity expressions, utilizing multiple human annotators and two annotation approaches (experts vs.\ crowds). We use these annotations to train a BERT model with multiple data augmentation strategies. Our augmented BERT model that combines both expert and crowd annotations outperforms the baseline BERT classifier trained with expert annotations only by over 25 points, from 58\% macro-F1 to almost 85\%. We use this high-quality model to automatically label over 270k tweets between September 2019 and December 2020. We then assess the automatically labeled data for how statements related to European (anti-)solidarity discourses developed over time and in relation to one another, before and during the COVID-19 crisis. Our results show that solidarity became increasingly salient and contested during the crisis. While the number of solidarity tweets remained on a higher level and dominated the discourse in the scrutinized time frame, anti-solidarity tweets initially spiked, then decreased to (almost) pre-COVID-19 values before rising to a stable higher level until the end of 2020.

Citations (8)
List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube