Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Optimal Solving of Constrained Path-Planning Problems with Graph Convolutional Networks and Optimized Tree Search (2108.01036v4)

Published 2 Aug 2021 in cs.AI, cs.LG, and cs.RO

Abstract: Deep learning-based methods are growing prominence for planning purposes. In this paper, we present a hybrid planner that combines a graph machine learning model and an optimal solver based on branch and bound tree search for path-planning tasks. More specifically, a graph neural network is used to assist the branch and bound algorithm in handling constraints associated with a desired solution path. There are multiple downstream practical applications, such as Autonomous Unmanned Ground Vehicles (AUGV), typically deployed in disaster relief or search and rescue operations. In off-road environments, AUGVs must dynamically optimize a source-destination path under various operational constraints, out of which several are difficult to predict in advance and need to be addressed online. We conduct experiments on realistic scenarios and show that graph neural network support enables substantial speedup and smoother scaling to harder path-planning problems. Additionally, information provided by the graph neural network enables the approach to outperform problem-specific handcrafted heuristics, highlighting the potential graph neural networks hold for path-planning tasks.

Citations (11)

Summary

We haven't generated a summary for this paper yet.