Papers
Topics
Authors
Recent
Search
2000 character limit reached

Mixing colourings in $2K_2$-free graphs

Published 2 Aug 2021 in math.CO and cs.DM | (2108.00001v1)

Abstract: The reconfiguration graph for the $k$-colourings of a graph $G$, denoted $R_{k}(G)$, is the graph whose vertices are the $k$-colourings of $G$ and two colourings are joined by an edge if they differ in colour on exactly one vertex. For any $k$-colourable $P_4$-free graph $G$, Bonamy and Bousquet proved that $R_{k+1}(G)$ is connected. In this short note, we complete the classification of the connectedness of $R_{k+1}(G)$ for a $k$-colourable graph $G$ excluding a fixed path, by constructing a $7$-chromatic $2K_2$-free (and hence $P_5$-free) graph admitting a frozen $8$-colouring. This settles a question of the second author.

Citations (2)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

Collections

Sign up for free to add this paper to one or more collections.