Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Paths between colourings of sparse graphs (1803.03950v2)

Published 11 Mar 2018 in math.CO and cs.DM

Abstract: The reconfiguration graph $R_k(G)$ of the $k$-colourings of a graph~$G$ has as vertex set the set of all possible $k$-colourings of $G$ and two colourings are adjacent if they differ on exactly one vertex. We give a short proof of the following theorem of Bousquet and Perarnau (\emph{European Journal of Combinatorics}, 2016). Let $d$ and $k$ be positive integers, $k \geq d + 1$. For every $\epsilon > 0$ and every graph $G$ with $n$ vertices and maximum average degree $d - \epsilon$, there exists a constant $c = c(d, \epsilon)$ such that $R_k(G)$ has diameter $O(nc)$. Our proof can be transformed into a simple polynomial time algorithm that finds a path between a given pair of colourings in $R_k(G)$.

Citations (18)

Summary

We haven't generated a summary for this paper yet.