Learned Optimizers for Analytic Continuation (2107.13265v2)
Abstract: Traditional maximum entropy and sparsity-based algorithms for analytic continuation often suffer from the ill-posed kernel matrix or demand tremendous computation time for parameter tuning. Here we propose a neural network method by convex optimization and replace the ill-posed inverse problem by a sequence of well-conditioned surrogate problems. After training, the learned optimizers are able to give a solution of high quality with low time cost and achieve higher parameter efficiency than heuristic fully-connected networks. The output can also be used as a neural default model to improve the maximum entropy for better performance. Our methods may be easily extended to other high-dimensional inverse problems via large-scale pretraining.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.