Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Discretization of parameter identification in PDEs using Neural Networks (2108.10618v3)

Published 24 Aug 2021 in math.NA, cs.NA, and math.OC

Abstract: We consider the ill-posed inverse problem of identifying a nonlinearity in a time-dependent PDE model. The nonlinearity is approximated by a neural network, and needs to be determined alongside other unknown physical parameters and the unknown state. Hence, it is not possible to construct input-output data pairs to perform a supervised training process. Proposing an all-at-once approach, we bypass the need for training data and recover all the unknowns simultaneously. In the general case, the approximation via a neural network can be realized as a discretization scheme, and the training with noisy data can be viewed as an ill-posed inverse problem. Therefore, we study discretization of regularization in terms of Tikhonov and projected Landweber methods for discretization of inverse problems, and prove convergence when the discretization error (network approximation error) and the noise level tend to zero.

Citations (5)

Summary

We haven't generated a summary for this paper yet.