Papers
Topics
Authors
Recent
2000 character limit reached

Estimating high-dimensional Markov-switching VARs (2107.12552v1)

Published 27 Jul 2021 in econ.EM

Abstract: Maximum likelihood estimation of large Markov-switching vector autoregressions (MS-VARs) can be challenging or infeasible due to parameter proliferation. To accommodate situations where dimensionality may be of comparable order to or exceeds the sample size, we adopt a sparse framework and propose two penalized maximum likelihood estimators with either the Lasso or the smoothly clipped absolute deviation (SCAD) penalty. We show that both estimators are estimation consistent, while the SCAD estimator also selects relevant parameters with probability approaching one. A modified EM-algorithm is developed for the case of Gaussian errors and simulations show that the algorithm exhibits desirable finite sample performance. In an application to short-horizon return predictability in the US, we estimate a 15 variable 2-state MS-VAR(1) and obtain the often reported counter-cyclicality in predictability. The variable selection property of our estimators helps to identify predictors that contribute strongly to predictability during economic contractions but are otherwise irrelevant in expansions. Furthermore, out-of-sample analyses indicate that large MS-VARs can significantly outperform "hard-to-beat" predictors like the historical average.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.