Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Tight distance-dependent estimators for screening two-center and three-center short-range Coulomb integrals over Gaussian basis functions (2107.09704v1)

Published 20 Jul 2021 in physics.chem-ph and physics.comp-ph

Abstract: We derive distance-dependent estimators for two-center and three-center electron repulsion integrals over a short-range Coulomb potential, $\textrm{erfc}(\omega r_{12})/r_{12}$. These estimators are much tighter than one based on the Schwarz inequality and can be viewed as a complement to the distance-dependent estimators for four-center short-range Coulomb integrals and for two-center and three-center full Coulomb integrals previously reported. Because the short-range Coulomb potential is commonly used in solid-state calculations, including those with the HSE functional and with our recently introduced range-separated periodic Gaussian density fitting, we test our estimators on a diverse set of periodic systems using a wide range of the range-separation parameter $\omega$. These tests demonstrate the robust tightness of our estimators, which are then used with integral screening to calculate periodic three-center short-range Coulomb integrals with linear scaling in system size.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.