Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 73 tok/s
Gemini 2.5 Pro 40 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 75 tok/s Pro
Kimi K2 184 tok/s Pro
GPT OSS 120B 466 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Efficient evaluation of two-center Gaussian integrals in periodic systems (2010.05400v2)

Published 12 Oct 2020 in cond-mat.str-el, physics.chem-ph, and physics.comp-ph

Abstract: By using Poisson's summation formula, we calculate periodic integrals over Gaussian basis functions by partitioning the lattice summations between the real and reciprocal space, where both sums converge exponentially fast with a large exponent. We demonstrate that the summation can be performed efficiently to calculate 2-center Gaussian integrals over various kernels including overlap, kinetic, and Coulomb. The summation in real space is performed using an efficient flavor of the McMurchie-Davidson Recurrence Relation (MDRR). The expressions for performing summation in the reciprocal space are also derived and implemented. The algorithm for reciprocal space summation allows us to reuse several terms and leads to significant improvement in efficiency when highly contracted basis functions with large exponents are used. We find that the resulting algorithm is only between a factor of 5 to 15 slower than that for molecular integrals, indicating the very small number of terms needed in both the real and reciprocal space summations. An outline of the algorithm for calculating 3-center Coulomb integrals is also provided.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.