Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Towards Privacy-preserving Explanations in Medical Image Analysis (2107.09652v1)

Published 20 Jul 2021 in cs.CV

Abstract: The use of Deep Learning in the medical field is hindered by the lack of interpretability. Case-based interpretability strategies can provide intuitive explanations for deep learning models' decisions, thus, enhancing trust. However, the resulting explanations threaten patient privacy, motivating the development of privacy-preserving methods compatible with the specifics of medical data. In this work, we analyze existing privacy-preserving methods and their respective capacity to anonymize medical data while preserving disease-related semantic features. We find that the PPRL-VGAN deep learning method was the best at preserving the disease-related semantic features while guaranteeing a high level of privacy among the compared state-of-the-art methods. Nevertheless, we emphasize the need to improve privacy-preserving methods for medical imaging, as we identified relevant drawbacks in all existing privacy-preserving approaches.

Citations (7)

Summary

We haven't generated a summary for this paper yet.