Recognizing bird species in diverse soundscapes under weak supervision (2107.07728v1)
Abstract: We present a robust classification approach for avian vocalization in complex and diverse soundscapes, achieving second place in the BirdCLEF2021 challenge. We illustrate how to make full use of pre-trained convolutional neural networks, by using an efficient modeling and training routine supplemented by novel augmentation methods. Thereby, we improve the generalization of weakly labeled crowd-sourced data to productive data collected by autonomous recording units. As such, we illustrate how to progress towards an accurate automated assessment of avian population which would enable global biodiversity monitoring at scale, impossible by manual annotation.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.