Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 80 tok/s
Gemini 2.5 Pro 60 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 26 tok/s Pro
GPT-4o 87 tok/s Pro
Kimi K2 173 tok/s Pro
GPT OSS 120B 433 tok/s Pro
Claude Sonnet 4 36 tok/s Pro
2000 character limit reached

Supercritical percolation on graphs of polynomial growth (2107.06326v3)

Published 13 Jul 2021 in math.PR and math.GR

Abstract: We consider Bernoulli percolation on transitive graphs of polynomial growth. In the subcritical regime ($p<p_c$), it is well known that the connection probabilities decay exponentially fast. In the present paper, we study the supercritical phase ($p>p_c$) and prove the exponential decay of the truncated connection probabilities (probabilities that two points are connected by an open path, but not to infinity). This sharpness result was established by [CCN87] on $\mathbb Zd$ and uses the difficult slab result of Grimmett and Marstrand. However, the techniques used there are very specific to the hypercubic lattices and do not extend to more general geometries. In this paper, we develop new robust techniques based on the recent progress in the theory of sharp thresholds and the sprinkling method of Benjamini and Tassion. On $\mathbb Zd$, these methods can be used to produce a new proof of the slab result of Grimmett and Marstrand.

Citations (12)

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.