Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Disentangling Transfer and Interference in Multi-Domain Learning (2107.05445v4)

Published 2 Jul 2021 in cs.CV, cs.AI, and cs.LG

Abstract: Humans are incredibly good at transferring knowledge from one domain to another, enabling rapid learning of new tasks. Likewise, transfer learning has enabled enormous success in many computer vision problems using pretraining. However, the benefits of transfer in multi-domain learning, where a network learns multiple tasks defined by different datasets, has not been adequately studied. Learning multiple domains could be beneficial, or these domains could interfere with each other given limited network capacity. Understanding how deep neural networks of varied capacity facilitate transfer across inputs from different distributions is a critical step towards open world learning. In this work, we decipher the conditions where interference and knowledge transfer occur in multi-domain learning. We propose new metrics disentangling interference and transfer, set up experimental protocols, and examine the roles of network capacity, task grouping, and dynamic loss weighting in reducing interference and facilitating transfer.

Citations (2)

Summary

We haven't generated a summary for this paper yet.