Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locality Relationship Constrained Multi-view Clustering Framework (2107.05073v1)

Published 11 Jul 2021 in cs.CV and cs.AI

Abstract: In most practical applications, it's common to utilize multiple features from different views to represent one object. Among these works, multi-view subspace-based clustering has gained extensive attention from many researchers, which aims to provide clustering solutions to multi-view data. However, most existing methods fail to take full use of the locality geometric structure and similarity relationship among samples under the multi-view scenario. To solve these issues, we propose a novel multi-view learning method with locality relationship constraint to explore the problem of multi-view clustering, called Locality Relationship Constrained Multi-view Clustering Framework (LRC-MCF). LRC-MCF aims to explore the diversity, geometric, consensus and complementary information among different views, by capturing the locality relationship information and the common similarity relationships among multiple views. Moreover, LRC-MCF takes sufficient consideration to weights of different views in finding the common-view locality structure and straightforwardly produce the final clusters. To effectually reduce the redundancy of the learned representations, the low-rank constraint on the common similarity matrix is considered additionally. To solve the minimization problem of LRC-MCF, an Alternating Direction Minimization (ADM) method is provided to iteratively calculate all variables LRC-MCF. Extensive experimental results on seven benchmark multi-view datasets validate the effectiveness of the LRC-MCF method.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xiangzhu Meng (11 papers)
  2. Wei Wei (425 papers)
  3. Wenzhe Liu (28 papers)

Summary

We haven't generated a summary for this paper yet.