Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Lifelong Mixture of Variational Autoencoders (2107.04694v1)

Published 9 Jul 2021 in cs.LG, cs.AI, and cs.CV

Abstract: In this paper, we propose an end-to-end lifelong learning mixture of experts. Each expert is implemented by a Variational Autoencoder (VAE). The experts in the mixture system are jointly trained by maximizing a mixture of individual component evidence lower bounds (MELBO) on the log-likelihood of the given training samples. The mixing coefficients in the mixture, control the contributions of each expert in the goal representation. These are sampled from a Dirichlet distribution whose parameters are determined through non-parametric estimation during lifelong learning. The model can learn new tasks fast when these are similar to those previously learnt. The proposed Lifelong mixture of VAE (L-MVAE) expands its architecture with new components when learning a completely new task. After the training, our model can automatically determine the relevant expert to be used when fed with new data samples. This mechanism benefits both the memory efficiency and the required computational cost as only one expert is used during the inference. The L-MVAE inference model is able to perform interpolation in the joint latent space across the data domains associated with different tasks and is shown to be efficient for disentangled learning representation.

Citations (25)

Summary

We haven't generated a summary for this paper yet.