Papers
Topics
Authors
Recent
2000 character limit reached

AGD-Autoencoder: Attention Gated Deep Convolutional Autoencoder for Brain Tumor Segmentation

Published 7 Jul 2021 in eess.IV, cs.CV, and cs.LG | (2107.03323v1)

Abstract: Brain tumor segmentation is a challenging problem in medical image analysis. The endpoint is to generate the salient masks that accurately identify brain tumor regions in an fMRI screening. In this paper, we propose a novel attention gate (AG model) for brain tumor segmentation that utilizes both the edge detecting unit and the attention gated network to highlight and segment the salient regions from fMRI images. This feature enables us to eliminate the necessity of having to explicitly point towards the damaged area(external tissue localization) and classify(classification) as per classical computer vision techniques. AGs can easily be integrated within the deep convolutional neural networks(CNNs). Minimal computional overhead is required while the AGs increase the sensitivity scores significantly. We show that the edge detector along with an attention gated mechanism provide a sufficient enough method for brain segmentation reaching an IOU of 0.78

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

Collections

Sign up for free to add this paper to one or more collections.