Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
102 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Improving a neural network model by explanation-guided training for glioma classification based on MRI data (2107.02008v2)

Published 5 Jul 2021 in cs.CV

Abstract: In recent years, AI systems have come to the forefront. These systems, mostly based on Deep learning (DL), achieve excellent results in areas such as image processing, natural language processing, or speech recognition. Despite the statistically high accuracy of deep learning models, their output is often a decision of "black box". Thus, Interpretability methods have become a popular way to gain insight into the decision-making process of deep learning models. Explanation of a deep learning model is desirable in the medical domain since the experts have to justify their judgments to the patient. In this work, we proposed a method for explanation-guided training that uses a Layer-wise relevance propagation (LRP) technique to force the model to focus only on the relevant part of the image. We experimentally verified our method on a convolutional neural network (CNN) model for low-grade and high-grade glioma classification problems. Our experiments show promising results in a way to use interpretation techniques in the model training process.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Frantisek Sefcik (1 paper)
  2. Wanda Benesova (4 papers)
Citations (11)