Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

The information loss of a stochastic map (2107.01975v3)

Published 5 Jul 2021 in cs.IT, math.CT, math.IT, and math.PR

Abstract: We provide a stochastic extension of the Baez-Fritz-Leinster characterization of the Shannon information loss associated with a measure-preserving function. This recovers the conditional entropy and a closely related information-theoretic measure that we call conditional information loss. Although not functorial, these information measures are semi-functorial, a concept we introduce that is definable in any Markov category. We also introduce the notion of an entropic Bayes' rule for information measures, and we provide a characterization of conditional entropy in terms of this rule.

Citations (13)

Summary

We haven't generated a summary for this paper yet.