Papers
Topics
Authors
Recent
2000 character limit reached

Byzantine-robust Federated Learning through Spatial-temporal Analysis of Local Model Updates

Published 3 Jul 2021 in cs.LG | (2107.01477v2)

Abstract: Federated Learning (FL) enables multiple distributed clients (e.g., mobile devices) to collaboratively train a centralized model while keeping the training data locally on the client. Compared to traditional centralized machine learning, FL offers many favorable features such as offloading operations which would usually be performed by a central server and reducing risks of serious privacy leakage. However, Byzantine clients that send incorrect or disruptive updates due to system failures or adversarial attacks may disturb the joint learning process, consequently degrading the performance of the resulting model. In this paper, we propose to mitigate these failures and attacks from a spatial-temporal perspective. Specifically, we use a clustering-based method to detect and exclude incorrect updates by leveraging their geometric properties in the parameter space. Moreover, to further handle malicious clients with time-varying behaviors, we propose to adaptively adjust the learning rate according to momentum-based update speculation. Extensive experiments on 4 public datasets demonstrate that our algorithm achieves enhanced robustness comparing to existing methods under both cross-silo and cross-device FL settings with faulty/malicious clients.

Citations (9)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.