Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 70 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 428 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Deep Inertial Navigation using Continuous Domain Adaptation and Optimal Transport (2106.15178v2)

Published 29 Jun 2021 in cs.LG and cs.RO

Abstract: In this paper, we propose a new strategy for learning inertial robotic navigation models. The proposed strategy enhances the generalisability of end-to-end inertial modelling, and is aimed at wheeled robotic deployments. Concretely, the paper describes the following. (1) Using precision robotics, we empirically characterise the effect of changing the sensor position during navigation on the distribution of raw inertial signals, as well as the corresponding impact on learnt latent spaces. (2) We propose neural architectures and algorithms to assimilate knowledge from an indexed set of sensor positions in order to enhance the robustness and generalisability of robotic inertial tracking in the field. Our scheme of choice uses continuous domain adaptation (DA) and optimal transport (OT). (3) In our evaluation, continuous OT DA outperforms a continuous adversarial DA baseline, while also showing quantifiable learning benefits over simple data augmentation. We will release our dataset to help foster future research.

Citations (2)

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube