Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Inertial Navigation Meets Deep Learning: A Survey of Current Trends and Future Directions (2307.00014v2)

Published 22 Jun 2023 in cs.RO, cs.AI, cs.LG, cs.SY, and eess.SY

Abstract: Inertial sensing is used in many applications and platforms, ranging from day-to-day devices such as smartphones to very complex ones such as autonomous vehicles. In recent years, the development of machine learning and deep learning techniques has increased significantly in the field of inertial sensing and sensor fusion. This is due to the development of efficient computing hardware and the accessibility of publicly available sensor data. These data-driven approaches mainly aim to empower model-based inertial sensing algorithms. To encourage further research in integrating deep learning with inertial navigation and fusion and to leverage their capabilities, this paper provides an in-depth review of deep learning methods for inertial sensing and sensor fusion. We discuss learning methods for calibration and denoising as well as approaches for improving pure inertial navigation and sensor fusion. The latter is done by learning some of the fusion filter parameters. The reviewed approaches are classified by the environment in which the vehicles operate: land, air, and sea. In addition, we analyze trends and future directions in deep learning-based navigation and provide statistical data on commonly used approaches.

Definition Search Book Streamline Icon: https://streamlinehq.com
References (107)
  1. N. El-Sheimy and A. Youssef, “Inertial sensors technologies for navigation applications: State of the art and future trends,” Satellite Navigation, vol. 1, no. 1, pp. 1–21, 2020.
  2. D. Engelsman and I. Klein, “Information aided navigation: A review,” arXiv preprint arXiv:2301.01114, 2023.
  3. S. S. A. Zaidi, M. S. Ansari, A. Aslam, N. Kanwal, M. Asghar, and B. Lee, “A survey of modern deep learning based object detection models,” Digital Signal Processing, p. 103514, 2022.
  4. D. W. Otter, J. R. Medina, and J. K. Kalita, “A survey of the usages of deep learning for natural language processing,” IEEE transactions on neural networks and learning systems, vol. 32, no. 2, pp. 604–624, 2020.
  5. M. Durgadevi et al., “Generative adversarial network (GAN): a general review on different variants of GAN and applications,” in 2021 6th International Conference on Communication and Electronics Systems (ICCES).   IEEE, 2021, pp. 1–8.
  6. F. Zhuang, Z. Qi, K. Duan, D. Xi, Y. Zhu, H. Zhu, H. Xiong, and Q. He, “A comprehensive survey on transfer learning,” Proceedings of the IEEE, vol. 109, no. 1, pp. 43–76, 2020.
  7. Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” nature, vol. 521, no. 7553, pp. 436–444, 2015.
  8. P. P. Shinde and S. Shah, “A review of machine learning and deep learning applications,” in 2018 Fourth international conference on computing communication control and automation (ICCUBEA).   IEEE, 2018, pp. 1–6.
  9. K.-W. Chiang, A. Noureldin, and N. El-Sheimy, “Multisensor integration using neuron computing for land-vehicle navigation,” GPS solutions, vol. 6, no. 4, pp. 209–218, 2003.
  10. A. Noureldin, A. Osman, and N. El-Sheimy, “A neuro-wavelet method for multi-sensor system integration for vehicular navigation,” Measurement science and technology, vol. 15, no. 2, p. 404, 2003.
  11. R. Sharaf, A. Noureldin, A. Osman, and N. El-Sheimy, “Online INS/GPS integration with a radial basis function neural network,” IEEE Aerospace and Electronic Systems Magazine, vol. 20, no. 3, pp. 8–14, 2005.
  12. N. El-Sheimy, K.-W. Chiang, and A. Noureldin, “The utilization of artificial neural networks for multisensor system integration in navigation and positioning instruments,” IEEE Transactions on instrumentation and measurement, vol. 55, no. 5, pp. 1606–1615, 2006.
  13. A. Noureldin, A. El-Shafie, and M. Bayoumi, “GPS/INS integration utilizing dynamic neural networks for vehicular navigation,” Information fusion, vol. 12, no. 1, pp. 48–57, 2011.
  14. X. Chen, C. Shen, W.-b. Zhang, M. Tomizuka, Y. Xu, and K. Chiu, “Novel hybrid of strong tracking Kalman filter and wavelet neural network for GPS/INS during GPS outages,” Measurement, vol. 46, no. 10, pp. 3847–3854, 2013.
  15. K.-W. Chiang, A. Noureldin, and N. El-Sheimy, “Constructive neural-networks-based MEMS/GPS integration scheme,” IEEE transactions on aerospace and electronic systems, vol. 44, no. 2, pp. 582–594, 2008.
  16. K.-W. Chiang, H.-W. Chang, C.-Y. Li, and Y.-W. Huang, “An artificial neural network embedded position and orientation determination algorithm for low cost MEMS INS/GPS integrated sensors,” Sensors, vol. 9, no. 4, pp. 2586–2610, 2009.
  17. K.-W. Chiang and H.-W. Chang, “Intelligent sensor positioning and orientation through constructive neural network-embedded INS/GPS integration algorithms,” Sensors, vol. 10, no. 10, pp. 9252–9285, 2010.
  18. J. J. Wang, W. Ding, and J. Wang, “Improving adaptive Kalman Filter in GPS/SDINS integration with neural network,” in Proceedings of the 20th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS 2007), 2007, pp. 571–578.
  19. M. Malleswaran, V. Vaidehi, A. Saravanaselvan, and M. Mohankumar, “Performance analysis of various artificial intelligent neural networks for GPS/INS integration,” Applied Artificial Intelligence, vol. 27, no. 5, pp. 367–407, 2013.
  20. S. Silvestrini and M. Lavagna, “Deep learning and artificial neural networks for spacecraft dynamics, navigation and control,” Drones, vol. 6, no. 10, p. 270, 2022.
  21. J. Song, D. Rondao, and N. Aouf, “Deep learning-based spacecraft relative navigation methods: A survey,” Acta Astronautica, vol. 191, pp. 22–40, 2022.
  22. H. Jiang, H. Wang, W.-Y. Yau, and K.-W. Wan, “A brief survey: Deep reinforcement learning in mobile robot navigation,” in 2020 15th IEEE Conference on Industrial Electronics and Applications (ICIEA).   IEEE, 2020, pp. 592–597.
  23. K. Zhu and T. Zhang, “Deep reinforcement learning based mobile robot navigation: A review,” Tsinghua Science and Technology, vol. 26, no. 5, pp. 674–691, 2021.
  24. F. AlMahamid and K. Grolinger, “Autonomous unmanned aerial vehicle navigation using reinforcement learning: A systematic review,” Engineering Applications of Artificial Intelligence, vol. 115, p. 105321, 2022.
  25. X. Ye and Y. Yang, “From seeing to moving: A survey on learning for visual indoor navigation (VIN),” arXiv preprint arXiv:2002.11310, 2020.
  26. F. Zeng, C. Wang, and S. S. Ge, “A survey on visual navigation for artificial agents with deep reinforcement learning,” IEEE Access, vol. 8, pp. 135 426–135 442, 2020.
  27. D. C. Guastella and G. Muscato, “Learning-based methods of perception and navigation for ground vehicles in unstructured environments: A review,” Sensors, vol. 21, no. 1, p. 73, 2020.
  28. F. Zhu, Y. Zhu, V. Lee, X. Liang, and X. Chang, “Deep learning for embodied vision navigation: A survey,” arXiv preprint arXiv:2108.04097, 2021.
  29. Y. Tang, C. Zhao, J. Wang, C. Zhang, Q. Sun, W. X. Zheng, W. Du, F. Qian, and J. Kurths, “Perception and navigation in autonomous systems in the era of learning: A survey,” IEEE Transactions on Neural Networks and Learning Systems, 2022.
  30. S. Azimi, J. Salokannel, S. Lafond, J. Lilius, M. Salokorpi, and I. Porres, “A survey of machine learning approaches for surface maritime navigation,” in Maritime Transport VIII: proceedings of the 8th International Conference on Maritime Transport: Technology, Innovation and Research: Maritime Transport’20.   Barcelona, 2020, pp. 103–117.
  31. Y. Li, R. Chen, X. Niu, Y. Zhuang, Z. Gao, X. Hu, and N. El-Sheimy, “Inertial sensing meets machine learning: opportunity or challenge?” IEEE Transactions on Intelligent Transportation Systems, 2021.
  32. P. Roy and C. Chowdhury, “A survey of machine learning techniques for indoor localization and navigation systems,” Journal of Intelligent & Robotic Systems, vol. 101, no. 3, p. 63, 2021.
  33. A. A. Golroudbari and M. H. Sabour, “Recent advancements in deep learning applications and methods for autonomous navigation–A comprehensive review,” arXiv preprint arXiv:2302.11089, 2023.
  34. C. Chen, “Deep learning for inertial positioning: A survey,” arXiv preprint arXiv:2303.03757, 2023.
  35. C. Shen, Y. Zhang, J. Tang, H. Cao, and J. Liu, “Dual-optimization for a MEMS-INS/GPS system during GPS outages based on the cubature Kalman filter and neural networks,” Mechanical Systems and Signal Processing, vol. 133, p. 106222, 2019.
  36. S. Lu, Y. Gong, H. Luo, F. Zhao, Z. Li, and J. Jiang, “Heterogeneous multi-task learning for multiple pseudo-measurement estimation to bridge GPS outages,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–16, 2020.
  37. R. Karlsson and G. Hendeby, “Speed estimation from vibrations using a deep learning CNN approach,” IEEE Sensors Letters, vol. 5, no. 3, pp. 1–4, 2021.
  38. Y. Tong, S. Zhu, Q. Zhong, R. Gao, C. Li, and L. Liu, “Smartphone-based vehicle tracking without GPS: Experience and improvements,” in 2021 IEEE 27th International Conference on Parallel and Distributed Systems (ICPADS).   IEEE, 2021, pp. 209–216.
  39. Y. Tong, S. Zhu, X. Ren, Q. Zhong, D. Tao, C. Li, L. Liu, and R. Gao, “Vehicle inertial tracking via mobile crowdsensing: Experience and enhancement,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–13, 2022.
  40. B. Zhou, Z. Gu, F. Gu, P. Wu, C. Yang, X. Liu, L. Li, Y. Li, and Q. Li, “DeepVIP: Deep learning-based vehicle indoor positioning using smartphones,” IEEE Transactions on Vehicular Technology, vol. 71, no. 12, pp. 13 299–13 309, 2022.
  41. X. Zhao, C. Deng, X. Kong, J. Xu, and Y. Liu, “Learning to compensate for the drift and error of gyroscope in vehicle localization,” in 2020 IEEE Intelligent Vehicles Symposium (IV).   IEEE, 2020, pp. 852–857.
  42. Z. Fei, S. Jia, and Q. Li, “Research on GNSS/DR method based on B-spline and optimized BP neural network,” in 2021 IEEE 33rd International Conference on Tools with Artificial Intelligence (ICTAI).   IEEE, 2021, pp. 161–168.
  43. R. Gao, X. Xiao, S. Zhu, W. Xing, C. Li, L. Liu, L. Ma, and H. Chai, “Glow in the dark: Smartphone inertial odometry for vehicle tracking in GPS blocked environments,” IEEE Internet of Things Journal, vol. 8, no. 16, pp. 12 955–12 967, 2021.
  44. M. Freydin and B. Or, “Learning car speed using inertial sensors for dead reckoning navigation,” IEEE Sensors Letters, vol. 6, no. 9, pp. 1–4, 2022.
  45. C. Li, S. Wang, Y. Zhuang, and F. Yan, “Deep sensor fusion between 2D laser scanner and IMU for mobile robot localization,” IEEE Sensors Journal, vol. 21, no. 6, pp. 8501–8509, 2019.
  46. S. Srinivasan, I. Sa, A. Zyner, V. Reijgwart, M. I. Valls, and R. Siegwart, “End-to-end velocity estimation for autonomous racing,” IEEE Robotics and Automation Letters, vol. 5, no. 4, pp. 6869–6875, 2020.
  47. R. C. Mendoza, B. Cao, D. Goehring, and R. Rojas, “GALNet: An end-to-end deep neural network for ground localization of autonomous cars.” in ROBOVIS, 2020, pp. 39–50.
  48. B. Zhou, P. Wu, Z. Gu, Z. Wu, and C. Yang, “XDRNet: Deep learning-based pedestrian and vehicle dead reckoning using smartphones,” in 2022 IEEE 12th International Conference on Indoor Positioning and Indoor Navigation (IPIN).   IEEE, 2022, pp. 1–8.
  49. N. Liu, Z. Hui, Z. Su, L. Qiao, and Y. Dong, “Integrated navigation on vehicle based on low-cost SINS/GNSS using deep learning,” Wireless Personal Communications, vol. 126, no. 3, pp. 2043–2064, 2022.
  50. S. Hosseinyalamdary, “Deep Kalman filter: Simultaneous multi-sensor integration and modelling; A GNSS/IMU case study,” Sensors, vol. 18, no. 5, p. 1316, 2018.
  51. C. Shen, Y. Zhang, X. Guo, X. Chen, H. Cao, J. Tang, J. Li, and J. Liu, “Seamless GPS/inertial navigation system based on self-learning square-root cubature Kalman filter,” IEEE Transactions on Industrial Electronics, vol. 68, no. 1, pp. 499–508, 2020.
  52. M. Brossard, A. Barrau, and S. Bonnabel, “RINS-W: Robust inertial navigation system on wheels,” in 2019 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).   IEEE, 2019, pp. 2068–2075.
  53. ——, “AI-IMU dead-reckoning,” IEEE Transactions on Intelligent Vehicles, vol. 5, no. 4, pp. 585–595, 2020.
  54. M. Brossard and S. Bonnabel, “Learning wheel odometry and IMU errors for localization,” in 2019 International Conference on Robotics and Automation (ICRA).   IEEE, 2019, pp. 291–297.
  55. X. Gao, H. Luo, B. Ning, F. Zhao, L. Bao, Y. Gong, Y. Xiao, and J. Jiang, “RL-AKF: An adaptive Kalman filter navigation algorithm based on reinforcement learning for ground vehicles,” Remote Sensing, vol. 12, no. 11, p. 1704, 2020.
  56. F. Wu, H. Luo, H. Jia, F. Zhao, Y. Xiao, and X. Gao, “Predicting the noise covariance with a multitask learning model for Kalman filter-based GNSS/INS integrated navigation,” IEEE Transactions on Instrumentation and Measurement, vol. 70, pp. 1–13, 2020.
  57. Y. Xiao, H. Luo, F. Zhao, F. Wu, X. Gao, Q. Wang, and L. Cui, “Residual attention network-based confidence estimation algorithm for non-holonomic constraint in GNSS/INS integrated navigation system,” IEEE Transactions on Vehicular Technology, vol. 70, no. 11, pp. 11 404–11 418, 2021.
  58. R. Clark, S. Wang, H. Wen, A. Markham, and N. Trigoni, “Vinet: Visual-inertial odometry as a sequence-to-sequence learning problem,” in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 31, no. 1, 2017.
  59. F. Baldini, A. Anandkumar, and R. M. Murray, “Learning pose estimation for UAV autonomous navigation and landing using visual-inertial sensor data,” in 2020 American Control Conference (ACC).   IEEE, 2020, pp. 2961–2966.
  60. M. F. Aslan, A. Durdu, A. Yusefi, and A. Yilmaz, “HVIOnet: A deep learning based hybrid visual–inertial odometry approach for unmanned aerial system position estimation,” Neural Networks, vol. 155, pp. 461–474, 2022.
  61. A. Yusefi, A. Durdu, M. F. Aslan, and C. Sungur, “LSTM and filter based comparison analysis for indoor global localization in UAVs,” IEEE Access, vol. 9, pp. 10 054–10 069, 2021.
  62. Y. Liu, Y. Zhou, and X. Li, “Attitude estimation of unmanned aerial vehicle based on LSTM neural network,” in 2018 international joint conference on neural networks (IJCNN).   IEEE, 2018, pp. 1–6.
  63. J. P. Silva do Monte Lima, H. Uchiyama, and R.-i. Taniguchi, “End-to-end learning framework for IMU-based 6-DOF odometry,” Sensors, vol. 19, no. 17, p. 3777, 2019.
  64. M. A. Esfahani, H. Wang, K. Wu, and S. Yuan, “AbolDeepIO: A novel deep inertial odometry network for autonomous vehicles,” IEEE Transactions on Intelligent Transportation Systems, vol. 21, no. 5, pp. 1941–1950, 2019.
  65. ——, “OriNet: Robust 3-D orientation estimation with a single particular IMU,” IEEE Robotics and Automation Letters, vol. 5, no. 2, pp. 399–406, 2019.
  66. D. Weber, C. Gühmann, and T. Seel, “RIANN—A robust neural network outperforms attitude estimation filters,” Ai, vol. 2, no. 3, pp. 444–463, 2021.
  67. N. Chumuang, A. Farooq, M. Irfan, S. Aziz, and M. Qureshi, “Feature matching and deep learning models for attitude estimation on a micro-aerial vehicle,” in 2022 International Conference on Cybernetics and Innovations (ICCI).   IEEE, 2022, pp. 1–6.
  68. S. O. Madgwick, A. J. Harrison, and R. Vaidyanathan, “Estimation of IMU and MARG orientation using a gradient descent algorithm,” in 2011 IEEE international conference on rehabilitation robotics.   IEEE, 2011, pp. 1–7.
  69. A. A. Golroudbari and M. H. Sabour, “End-to-end deep learning framework for real-time inertial attitude estimation using 6DOF IMU,” arXiv preprint arXiv:2302.06037, 2023.
  70. P. Narkhede, A. Mishra, K. Hamshita, A. K. Shubham, and A. Chauhan, “Inertial sensors and GPS fusion using LSTM for position estimation of aerial vehicle,” in 2022 4th International Conference on Smart Systems and Inventive Technology (ICSSIT).   IEEE, 2022, pp. 671–675.
  71. Y. Liu, Q. Luo, W. Liang, and Y. Zhou, “GPS/INS integrated navigation with LSTM neural network,” in 2021 4th International Conference on Intelligent Autonomous Systems (ICoIAS).   IEEE, 2021, pp. 345–350.
  72. Y. Liu, Y. Zhou, and Y. Zhang, “A novel hybrid attitude fusion method based on LSTM neural network for unmanned aerial vehicle,” in 2021 IEEE International Conference on Robotics and Biomimetics (ROBIO).   IEEE, 2021, pp. 1630–1635.
  73. Y. Liu, Q. Luo, and Y. Zhou, “Deep learning-enabled fusion to bridge GPS outages for INS/GPS integrated navigation,” IEEE Sensors Journal, vol. 22, no. 9, pp. 8974–8985, 2022.
  74. P. Geragersian, I. Petrunin, W. Guo, and R. Grech, “An INS/GNSS fusion architecture in GNSS denied environment using gated recurrent unit,” in AIAA SCITECH 2022 Forum, 2022, p. 1759.
  75. A. Shurin and I. Klein, “QuadNet: A hybrid framework for quadrotor dead reckoning,” Sensors, vol. 22, no. 4, p. 1426, 2022.
  76. M. K. Al-Sharman, Y. Zweiri, M. A. K. Jaradat, R. Al-Husari, D. Gan, and L. D. Seneviratne, “Deep-learning-based neural network training for state estimation enhancement: Application to attitude estimation,” IEEE Transactions on Instrumentation and Measurement, vol. 69, no. 1, pp. 24–34, 2019.
  77. Z. Zou, T. Huang, L. Ye, and K. Song, “CNN based adaptive Kalman filter in high-dynamic condition for low-cost navigation system on highspeed UAV,” in 2020 5th Asia-Pacific Conference on Intelligent Robot Systems (ACIRS).   IEEE, 2020, pp. 103–108.
  78. B. Or and I. Klein, “A hybrid model and learning-based adaptive navigation filter,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–11, 2022.
  79. X. Zhang, X. Mu, H. Liu, B. He, and T. Yan, “Application of modified EKF based on intelligent data fusion in AUV navigation,” in 2019 IEEE Underwater Technology (UT).   IEEE, 2019, pp. 1–4.
  80. X. Mu, B. He, X. Zhang, Y. Song, Y. Shen, and C. Feng, “End-to-end navigation for autonomous underwater vehicle with hybrid recurrent neural networks,” Ocean Engineering, vol. 194, p. 106602, 2019.
  81. X. Zhang, B. He, G. Li, X. Mu, Y. Zhou, and T. Mang, “NavNet: AUV navigation through deep sequential learning,” IEEE Access, vol. 8, pp. 59 845–59 861, 2020.
  82. X. Zhang, B. He, S. Gao, L. Zhou, and R. Huang, “Sequential learning navigation method and general correction model for Autonomous Underwater Vehicle,” Ocean Engineering, vol. 278, p. 114347, 2023.
  83. H. Ma, X. Mu, and B. He, “Adaptive navigation algorithm with deep learning for autonomous underwater vehicle,” Sensors, vol. 21, no. 19, p. 6406, 2021.
  84. G. He, Y. Chaobang, D. Guohua, and S. Xiaoshuai, “The TCN-LSTM deep learning model for real-time prediction of ship motions,” Available at SSRN 4405121.
  85. S. Song, J. Liu, J. Guo, J. Wang, Y. Xie, and J.-H. Cui, “Neural-network-based AUV navigation for fast-changing environments,” IEEE Internet of Things Journal, vol. 7, no. 10, pp. 9773–9783, 2020.
  86. I. B. Saksvik, A. Alcocer, and V. Hassani, “A deep learning approach to dead-reckoning navigation for autonomous underwater vehicles with limited sensor payloads,” in OCEANS 2021: San Diego–Porto.   IEEE, 2021, pp. 1–9.
  87. D. Li, J. Xu, H. He, and M. Wu, “An underwater integrated navigation algorithm to deal with DVL malfunctions based on deep learning,” IEEE Access, vol. 9, pp. 82 010–82 020, 2021.
  88. N. Cohen and I. Klein, “BeamsNet: A data-driven approach enhancing Doppler velocity log measurements for autonomous underwater vehicle navigation,” Engineering Applications of Artificial Intelligence, vol. 114, p. 105216, 2022.
  89. ——, “Libeamsnet: AUV velocity vector estimation in situations of limited DVL beam measurements,” in OCEANS 2022, Hampton Roads.   IEEE, 2022, pp. 1–5.
  90. N. Cohen, Z. Yampolsky, and I. Klein, “Set-transformer BeamsNet for AUV velocity forecasting in complete DVL outage scenarios,” in 2023 IEEE Underwater Technology (UT), 2023, pp. 1–6.
  91. E. Topini, F. Fanelli, A. Topini, M. Pebody, A. Ridolfi, A. B. Phillips, and B. Allotta, “An experimental comparison of deep learning strategies for AUV navigation in DVL-denied environments,” Ocean Engineering, vol. 274, p. 114034, 2023.
  92. N. Shaukat, A. Ali, M. Javed Iqbal, M. Moinuddin, and P. Otero, “Multi-sensor fusion for underwater vehicle localization by augmentation of RBF neural network and error-state Kalman filter,” Sensors, vol. 21, no. 4, p. 1149, 2021.
  93. B. Or and I. Klein, “Adaptive step size learning with applications to velocity aided inertial navigation system,” IEEE Access, vol. 10, pp. 85 818–85 830, 2022.
  94. ——, “ProNet: Adaptive process noise estimation for INS/DVL fusion,” in 2023 IEEE Underwater Technology (UT), 2023, pp. 1–5.
  95. H. Chen, P. Aggarwal, T. M. Taha, and V. P. Chodavarapu, “Improving inertial sensor by reducing errors using deep learning methodology,” in NAECON 2018-IEEE National Aerospace and Electronics Conference.   IEEE, 2018, pp. 197–202.
  96. D. Engelsman, “Data-driven denoising of accelerometer signals,” Ph.D. dissertation, University of Haifa (Israel), 2022.
  97. D. Engelsman and I. Klein, “A learning-based approach for bias elimination in low-cost gyroscopes,” in 2022 IEEE International Symposium on Robotic and Sensors Environments (ROSE).   IEEE, 2022, pp. 01–05.
  98. C. Jiang, S. Chen, Y. Chen, Y. Bo, L. Han, J. Guo, Z. Feng, and H. Zhou, “Performance analysis of a deep simple recurrent unit recurrent neural network (SRU-RNN) in MEMS gyroscope de-noising,” Sensors, vol. 18, no. 12, p. 4471, 2018.
  99. C. Jiang, S. Chen, Y. Chen, B. Zhang, Z. Feng, H. Zhou, and Y. Bo, “A MEMS IMU de-noising method using long short term memory recurrent neural networks (LSTM-RNN),” Sensors, vol. 18, no. 10, p. 3470, 2018.
  100. Z. Zhu, Y. Bo, and C. Jiang, “A MEMS gyroscope noise suppressing method using neural architecture search neural network,” Mathematical Problems in Engineering, vol. 2019, pp. 1–9, 2019.
  101. C. Jiang, Y. Chen, S. Chen, Y. Bo, W. Li, W. Tian, and J. Guo, “A mixed deep recurrent neural network for MEMS gyroscope noise suppressing,” Electronics, vol. 8, no. 2, p. 181, 2019.
  102. S. Han, Z. Meng, X. Zhang, and Y. Yan, “Hybrid deep recurrent neural networks for noise reduction of MEMS-IMU with static and dynamic conditions,” Micromachines, vol. 12, no. 2, p. 214, 2021.
  103. M. Brossard, S. Bonnabel, and A. Barrau, “Denoising IMU gyroscopes with deep learning for open-loop attitude estimation,” IEEE Robotics and Automation Letters, vol. 5, no. 3, pp. 4796–4803, 2020.
  104. P. Russo, F. Di Ciaccio, and S. Troisi, “DANAE: A denoising autoencoder for underwater attitude estimation,” arXiv preprint arXiv:2011.06853, 2020.
  105. F. Huang, Z. Wang, L. Xing, and C. Gao, “A MEMS IMU gyroscope calibration method based on deep learning,” IEEE Transactions on Instrumentation and Measurement, vol. 71, pp. 1–9, 2022.
  106. Y. Liu, W. Liang, and J. Cui, “LGC-Net: A lightweight gyroscope calibration network for efficient attitude estimation,” arXiv preprint arXiv:2209.08816, 2022.
  107. K. Yuan and Z. J. Wang, “A simple self-supervised IMU denoising method for inertial aided navigation,” IEEE Robotics and Automation Letters, 2023.
Citations (15)

Summary

We haven't generated a summary for this paper yet.