2-vector bundles (2106.12198v2)
Abstract: We develop a ready-to-use comprehensive theory for (super) 2-vector bundles over smooth manifolds. It is based on the bicategory of (super) algebras, bimodules, and intertwiners as a model for 2-vector spaces. We discuss symmetric monoidal structures and the corresponding notions of dualizability, and we derive a classification in terms of Cech cohomology with values in a crossed module. One important feature of our 2-vector bundles is that they contain bundle gerbes as well as ordinary algebra bundles as full sub-bicategories, and hence provide a unifying framework for these so far distinct objects. We provide several examples of isomorphisms between bundle gerbes and algebra bundles, coming from representation theory, twisted K-theory, and spin geometry.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.