Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 175 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 37 tok/s Pro
GPT-4o 108 tok/s Pro
Kimi K2 180 tok/s Pro
GPT OSS 120B 447 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Categorical Structures on Bundle Gerbes and Higher Geometric Prequantisation (1709.06174v1)

Published 18 Sep 2017 in math-ph, hep-th, math.CT, math.DG, and math.MP

Abstract: We present a construction of a 2-Hilbert space of sections of a bundle gerbe, a suitable candidate for a prequantum 2-Hilbert space in higher geometric quantisation. We introduce a direct sum on the morphism categories in the 2-category of bundle gerbes and show that these categories are cartesian monoidal and abelian. Endomorphisms of the trivial bundle gerbe, or higher functions, carry the structure of a rig-category, which acts on generic morphism categories of bundle gerbes. We continue by presenting a categorification of the hermitean metric on a hermitean line bundle. This is achieved by introducing a functorial dual that extends the dual of vector bundles to morphisms of bundle gerbes, and constructing a two-variable adjunction for the aforementioned rig-module category structure on morphism categories. Its right internal hom is the module action, composed by taking the dual of higher functions, while the left internal hom is interpreted as a bundle gerbe metric. Sections of bundle gerbes are defined as morphisms from the trivial bundle gerbe to a given bundle gerbe. The resulting categories of sections carry a rig-module structure over the category of finite-dimensional Hilbert spaces. A suitable definition of 2-Hilbert spaces is given, modifying previous definitions by the use of two-variable adjunctions. We prove that the category of sections of a bundle gerbe fits into this framework, thus obtaining a 2-Hilbert space of sections. In particular, this can be constructed for prequantum bundle gerbes in problems of higher geometric quantisation. We define a dimensional reduction functor and show that the categorical structures introduced on bundle gerbes naturally reduce to their counterparts on hermitean line bundles with connections. In several places in this thesis, we provide examples, making 2-Hilbert spaces of sections and dimensional reduction very explicit.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.